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Abstract. In this paper, we develop a branch-and-bound algorithm for maximizing a sum of p
($2) linear ratios on a polytope. The problem is embedded into a 2p-dimensional space, in which
a concave polyhedral function overestimating the optimal value is constructed for the bounding
operation. The branching operation is carried out in a p-dimensional space, in a way similar to the
usual rectangular branch-and-bound method. We discuss the convergence properties and report
some computational results.
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1. Introduction

Since the classical paper [4] by Charnes and Cooper in 1962, intensive research has
been done on fractional programs [19]. Fractional programming is one of the most
successful fields today in nonlinear optimization. In fact, the linear fractional
program which optimizes a single linear ratio has been proved equivalent to a linear
program by Charnes and Cooper [4]; and hence it can be solved in polynomial time
now using interior-point algorithms [11]. Even in the multi-ratio case, the problem
of maximizing the minimum value of linear ratios can be solved quite efficiently
using a local search algorithm similar to Newton’s method [7]. Unfortunately,
however, there is still no decisive method for optimizing a sum of linear ratios on a
polyhedron though it is also a multi-ratio problem.

The optimization of a sum of linear ratios arises in various areas: multi-stage
stochastic shipping [1], cluster analysis [20] and multi-objective bond portfolio [15],
to name but a few. While there is much demand for solution to this problem, all the
theoretical results reported so far make us pessimistic about the existence of efficient
algorithms [6, 18]. The only thing known about the optimality is that a globally
optimal solution lies on the boundary of the feasible set if it exists [6]. During the
last decade, however, some promising algorithms that use the low-rank nonconvexi-
ty [14] have been proposed for the problem with a few ratios [12, 16, 17]. As for the
problem where the number of rarios is not limited, Falk and Palocsay [9] suggested
an interesting approach in an ‘image space’. They associated a new variable with
each of the ratios and defined the image space, in which optimization is easy in
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certain directions. Sequentially optimizing in these directions, they yielded a
globablly optimal solution. Konno and Fukaishi [13] also associated a new variable
with each of the ratios, thereby moving nonlinearities into the constraints. They
further transformed the ratio constraints to multiplicative ones. To solve the
resulting problem, they applied a branch-and-bound algorithm. In his recent paper
[3], Benson solved nonlinear sum-of-ratios problems in a similar way; but he
associated a new variable with only the reciprocal of each denominator. In a special
case that the dimensionality of the problem is fixed at two, Chen et al. [5] recently
developed a remarkably efficient algorithm using computational geometry.

In this paper, we will develop a branch-and-bound algorithm for maximizing a
sum of p ($2) linear ratios on a polytope. We associate a new variable with each of
the denominators and numerators and define a 2p-dimensional space. We construct a
concave polyhedral function overestimating the value of the sum of ratios in this
space and compute an upper bound on the optimal value. Therefore, the bounding
operation is carried out mainly in the 2p-dimensional space. In contrast to this, the
stage of the branching operation is substantially the p-dimensional image space, i.e.,
we subdivide the range of each ratio successively in the algorithms. The organiza-
tion of the paper is as follows. In Section 2, after giving the formal definition of the
problem, we embed it into the 2p-dimensional space. We also explain the outline of
the branch-and-bound algorithm there. In Section 3, we construct the function
overestimating the value of the sum of ratios. We then show that the lower bound
can be computed by solving a linear program. Section 4 is devoted to the branching
operation. We discuss the convergence of the algorithm and show that it is
guaranteed if we subdivide the range of each ratio according to the same rules as
adopted in the usual rectangular branch-and-bound method for separable concave
minimization problems [10, 21]. In Section 5, we summarize the algorithm and
prove that it generates a globally e-optimally solution in finite time. Lastly, we
report computational results in Section 6.

2. Reduction to 2p-dimensional problem

Let us consider a problem of maximizing a sum of p linear ratios

p id x 1 di
]]]maximize z 5 O i (2.1)c x 1 gi51 i*

subject to Ax 5 b, x $ 0 ,

m3n m i i nwhere A [ R , b [ R , c , d [ R and g , d [ R for i 5 1, . . . , p. We assumei i

that the feasible set
nX 5 hx [ R u Ax 5 b, x $ 0j

is bounded and has a nonempty interior, and that
i ic x 1 g . 0 , d x 1 d . 0 , ;x [ X , i 5 1, . . . , p . (2.2)i i
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i iAs is well known, under condition (2.2) each ratio (d x 1 d ) /(c x 1 g ) is pseudo-i i

monotonic on X (i.e., both pseudoconvex and pseudoconcave; see [2] for details).
The sum of pseudomonotonic functions is, however, neither psuedoconcave nor
even quasiconcave in general. Therefore, (2.1) can have multiple locally optimal
solutions, many of which fail to be globally optimal though at least one exists by
compactness of X. What is even worse, no vertex of X might provide a globally
optimal solution. This means that vertex enumeration often used in multiextremal
global optimization [10] does not work on this problem (2.1).

For convenience, let us introduce two vectors j and h, each of p auxiliary
variables, and define a 2p-dimensional set:

2p
V 5 h(j, h) [ R u j 5 Cx 1 g, h 5 Dx 1 d, x [ Xj ,

where
1 1c g d d1 1
? ? ? ?? ? ? ?C 5 , g 5 , D 5 , d 5 .? ? ? ?p p3 4 3 4 3 4 3 4c g d dp p

1 1For each i 5 1, . . . , p, we also introduce four numbers s , t , u and v satisfyingi i i i

1 i i0 , s # minh(d x 1 d ) /(c x 1 g ) u x [ Xji i i
1 i i

` . t $ maxh(d x 1 d ) /(c x 1 g ) u x [ Xji i i (2.3)i i0 , u # minh(c 1 d )x u x [ Xj 1 g 1 di i i 6
i i

` . v # maxh(c 1 d )x u x [ Xj 1 g 1 d .i i i

Notice that we can easily obtain each of these numbers by solving a linear
programming problem [4]. Let

2
G 5 h(j , h ) [ R u u # j 1h # v ji i i 1 i i i i

1 2 1 1
D 5 h(j , h ) [ R u s j #h # t j j ,i i i 1 i i i i i

? ?where R denotes the nonnegative orthant of R ; and let1

1 1 1
G 5 G 3 ? ? ? 3 G , D 5 D 3 ? ? ? 3 D .1 p 1 p

1Since V is a subset of G > D , problem (2.1) reduces to a 2p-dimensional master
problem

p

maximize z 5 O h /ji iMP i51* 1subject to (j, h) [ V > G > D .

We apply a branch-and-bound method to this problem, instead of the original
problem (2.1) of dimensionality n.

1In our algorithm, while partitioning the cone D successively into
j j j

D 5 D 3 ? ? ? 3 D , j [ ) , (2.4)1 p
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jwe solve each subproblem of MP with a feasible set V > G > D , where

j 2 j j
D 5 h(j , h ) [ R u s j #h # t j ji i i 1 i i i i j

(2.5)1 j j k J
D 5 < D ; int D > int D 5 5 if j ± k .i j[) i i i

The outline is as follows:
: :Let ) 5 h1j and k 5 1. Repeat Steps 1–3 while ) ± 5.

j:Step 1. Take an appropriate index j from ) and let D 5 D . Define a subproblem

p

maximize z 5 O h /ji iP(D) i51*subject to (j, h) [ V > G > D .

¯Step 2 (bounding operation). Compute an upper bound z(D) on the value of P(D).
¯If z(D) is less than or equal to the value of the best feasible solution obtained so far,

discard D and return to Step 1.
2kStep 3 (branching operation). Otherwise, divide D into two cones D and

2k11 :D . Add h2k, 2k 1 1j to ) and k 5 k 1 1.

Needless to say, the efficiency of this algorithm is most influenced by Steps 2 and 3.
We will show how to carry them out in order. Throughout the paper, we identify )

jwith the set of cones D , j [ ).

3. Bounding operation (Step 2)

The cone D defining problem P(D) is a direct product of p cones, each in a
two-dimensional plane:

2
D 5 h(j , h ) [ R u s j #h # t j j , i 5 1, . . . , p .i i i 1 i i i i i

Therefore, G > D for each i constitutes a trapezoid with four vertices:i i

S 5 (u , s u ) /(s 1 1) , T 5 (v , s v ) /(s 1 1)i i i i i i i i

U 5 (v , t v ) /(t 1 1) , V5 (u , t u ) /(t 1 1)i i i i i i i i

(see Figure 1). Let

f (j , h ) 5 (t 1 1)(h 2 s j ) /u 1 si i i i i i i i i (3.1)Jg (j , h ) 5 (s 1 1)(h 2 t j ) /v 1 t .i i i i i i i i i

As is shown in Figure 2, f is an affine function passing h /j at vertex V and sidei i i
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Figure 1. Trapezoid G > D .i i

Figure 2. Overestimator f of h /j .i i i
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S–T of the trapezoid; and g passes it at vertex T and side U –V. Using these twoi

functions, we define

f (j , h ) 5 minh f (j , h ), g (j , h )j . (3.2)i i i i i i i i i

LEMMA 3.1. The function f is concave, polyhedral and satisfies the following fori

any (j , h ) [ G :i i i

f (j , h ) $h /j if (j , h ) [ Di i i i i i i i (3.3)Jf (j , h ) ,h /j if (j , h ) [⁄ D .i i i i i i i i

In particular, the value of f agrees with h /j at two sides S–T (h /j 5 s ) and U-Vi i i i i i

(h /j 5 t ) of trapezoid G > D .i i i i i

Proof. Let us divide G 5 h(j , h ) u u # j 1h # v j by line T–V intoi i i i i i i

f
G 5 G > h(j , h ) u f (j , h ) # g (j , h )ji i i i i i i i i i

g
G 5 G > h(j , h ) u f (j , h ) $ g (j , h )ji i i i i i i i i i

f9 9(see Figure 2), and take an arbitrary point (j , h ) from G . We then havei i i

9 9 9 9 9 9 9f (j , h ) 5 f (j , h ). If h 5 0, then (j , h ) cannot be a point in D ; and hencei i i i i i i i i i

9the second of (3.3) holds. Assuming h ± 0, we havei

9 9 9 9 9 9 9 9 9f (j , h ) 2h /j 5 (t 1 1)(h 2 s j ) /u 2 (h 2 s j ) /ji i i i i i i i i i i i i i

9 9 9 9 95 (h 2 s j )(t j 1 j 2 u ) /(u j ) .i i i i i i i i i

9 9 9 9 9If (j , h ) [ D , then s j #h # t j andi i i i i i i i

9 9 9 9 9 9 9 9 9f (j , h ) 2h /j $ (h 2 s j )(t j 2h ) /(u j ) $ 0 .i i i i i i i i i i i i i

9 9 9Otherwise, h , s j # t j andi i i i i

9 9 9 9 9 9 9 9 9f (j , h ) 2h /j # (h 2 s j )(t j 2h ) /(u j ) , 0 .i i i i i i i i i i i i i

gSimilarly, (3.3) holds for any point in G . The rest follows from definition. hi

We refer to f as the overestimator of h /j on G > D . Replacing h /j by itsi i i i i i i

overestimator for each i in P(D), we have a concave maximization problem

p

maximize z 5 O f (j , h )i i iP̄(D) i51*subject to (j, h) [ V > G > D .

¯ ¯¯¯ ¯¯Let (j, h ) be an optimal solution to P(D) and z(D) the value of (j, h ). Also let z(D)
¯denote the optimal value of P(D). If V > G > D 5 5, we interpret both z(D) and z(D)

as 2`. The following is an immediate consequence of Lemma 3.1.
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¯LEMMA 3.2. If z(D) . 2`, then
p

¯¯ ¯O h /j # z(D) # z(D) . (3.4)i i
i51

¯3.1. SOLUTION TO P(D)

¯We should remark that P(D) is equivalent to a linear programming problem

p

maximize z 5 O ziu
i51

subject to Ax 5 b, x $ 0
(3.5)i iu (t 1 1)(d 2 s c )x 2 u z $ ai i i i i

i i i 5 1, . . . , p ,(s 1 1)(d 2 t c )x 2 v z $ bi i i i i6u s # z # ti i i

where

a 5 (t 1 1)(s g 2 d ) 2 s u , b 5 (s 1 1)(t g 2 d ) 2 t v .i i i i i i i i i i i i i i

To see this, we need first to prove the following:

LEMMA 3.3. Let (j , h ) be a point in G . Theni i i

(j , h ) [ D iff s # f (j , h ) # t . (3.6)i i i i i i i i

f gProof. Let G and G denote the subsets of G defined in the proof of Lemma 3.1.i i i
fThen G > D is a triangle with vertices S, T and V (see Figure 2). It is easy to checki i

that side S–T and vertex V provide the minimum value s and the maximum value t ,i i
f frespectively, for f 5 f on G > D . If (j , h ) [ G \D , then h , s j and hencei i i i i i i i i i i

f (j , h ) 5 (t 1 1)(h 2 s j ) /u 1 s , s . Therefore, (3.6) holds for any (j , h ) [i i i i i i i i i i i i
f g

G . Similarly, we can show (3.6) for (j , h ) [ G . hi i i i

¯PROPOSITION 3.4. If (3.5) is infeasible, then z(D) 5 2`. Otherwise, for any
¯¯optimal solution (x, j ) to (3.5) we have

p

¯ ¯¯¯ ¯ ¯j 5 Cx 1 g , h 5 Dx 1 d , z(D) 5 O z .i
i51

¯Proof. We see from (3.6) that P(D) is equivalent to

p

maximize z 5 O zi
i51

subject to (j, h) [ V

z 5 f (j , h )* i i i i i 5 1, . . . , p .Js # z # ti i i

This problem reduces to (3.5); and hence the assertion follows. h
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¯Problem P(D) itself is actually a linear programming problem even if we do not
replace the constraint (j , h ) [ D by s # f (j , h ) # t for each i. This transforma-i i i i i i i i

¯tion, however, enables one to compute z(D) using the upper bounding simplex
method and to reduce the total computational time considerably (see [8] for details).

¯Anyway, by solving a linear programming problem, we obtain an upper bound z(D)
¯ ¯on the value of P(D) and its feasible solution (j, h ), both needed in Step 2 of the

algorithm.

4. Branching operation (Step 3)
2k 2k11In Step 3, we have to divide D in such a way that the resulting sets D and D

satisfy (2.4) and (2.5). This can be done by giving an index i [ h1, . . . , pj and a
number w [ [s , t ]. Namely,i i i

j j
D 5 D 3 ? ? ? 3 D 3 D 3 D 3 ? ? ? 3 D , j 5 2k, 2k 1 1 , (4.1)1 i21 i i11 p

where
2k 2

D 5 h(j , h ) [ R u s j #h # w j ji i i 1 i i i i i (4.2)J2k11 2
D 5 h(j , h ) [ R u w j #h # t j j ,i i i 1 i i i i i

In general, no matter how we select i and w , the finiteness of the algorithmi

cannot be guaranteed without a tolerance for the optimal value of problem (2.1). In
j,that case, the algorithm generates an infinite sequence of cones D , , 5 1, 2, . . .

such that
`

j j j1 2 ,S DD . D . ? ? ? , V > G > > D ± 5 . (4.3)
, 51

j ,,Let us denote D simply by D and the sequence by the index set
, 11+ 5 h1, 2, . . . , ,, . . .j. We assume that for each , [ +, cone D is generated from

, , , , ,
D via (4.1) and (4.2) for some i [ h1, . . . , pj and w [ [s , t ], where D 5, i i i i, , , ,2 , ,h(j , h ) [ R u s h # j # t h j. The following lemma shows that + possessesi i 1 i i i i i, , , , , , ,

a property similar to nested rectangles generated by the rectangular branch-and-
bound method for separable concave minimization problems (see Lemma 5.4 in
[21]):

LEMMA 4.1. There exists an infinite subsequence + . + such that i 5 q for allq ,
, , * *, [ + . Also, hs u , [ + j and ht u , [ + j have limits s and t such thatq q q q q q q

,* * * * *s # t ; and hw u , [ + j converges to w [ hs , t j.q q q q q q q

Proof. Since i is an element of the finite set h1, . . . , pj, we can take an infinite,

subsequence + such that i 5 q for all , [ + . Assuming + 5 h1, 2, . . .j withoutq , q q

loss generality, we have
1 , , 11 , 11 , 1s # s # s # t # t # t , ;, [ + .q q q q q q q
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1 1* * * *Hence, for some s and t such that s # s # t # t we haveq q q q q q

, , 11 , , 11* *lim s 5 lim s 5 s , lim t 5 lim t 5 t .q q q q q q
, →` , →` , →` , →`

, ,* * *These also imply that lim w 5 w [ hs , t j because w coincides with either, →` q q q q q
, 11 , 11s or t for each , [ + . hq q q

,In the rest of this section, we will give two different rules of selecting (i , w ) to, i,,divide D for each , [ +. The sequence + generated by each of these rules satisfies
p

, , ,¯¯ ¯lim z(D ) 2 O h /j 5 0 , (4.4)F Gi i
, →` i51

, , , ,¯ ¯¯ ¯where (j , h ) is an optimal solution to P(D ) and z(D ) the optimal value. The
condition (4.4) is the key to guarantee the finiteness of the algorithm when a
positive tolerance is allowed for the optimal value of problem (2.1).

4.1. BISECTION

On the analogy of the rectangular branch-and-bound method, the easiest way to
,divide D is bisection. For each , [ +, let us select

, ,i [ arg maxht 2 s u i 5 1, . . . , pj ; (4.5), i i

, ,and divide D by the line h 5 w fori i i, , ,

, , ,w 5 (1 2 l)s 1 lt , (4.6)i i i, , ,

,where l [ (0, 1) is a constant. We refer to this selection rule of (i , w ) as bisection, i,

of ratio l.

LEMMA 4.2. If + is generated according to the bisection rule of ratio l [ (0, 1),
then (4.4) holds.

Proof. As in Lemma 4.1, let + , + denote the infinite sequence where i 5 qq ,
, , ,* * * * *for all ,. Then we have s → s , t → t and w → w [ hs , t j as , → ` in + .q q q q q q q q q

From (4.6), however, we have

* * * * *(1 2 l)s 1 lt 5 w [ hs , t j ,q q q q q

* * *which holds only if w 5 s 5 t . This, together with (4.5), implies that if k → ` inq q q
,+, cone D shrinks to a half-line:

2p *D* 5 h(j, h) [ R u j 5 w h , i 5 1, . . . , pj , (4.7)1 i i i

1 1*where w is some point in [s , t ].i i i
, ,¯ ¯For each i, the sequence h(j , h ) u , [ + j is generated in the compact seti i

1 * * * * *G > D , and hence has at least one limit point (j , h ), which satisfies j 5 w hi i i i i i i

by (4.7). Therefore,
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, ,¯ *¯lim h /j 5 w .i i i
, →`

, , , , , ,¯ ¯On the other hand, we have s # f (j , h ) # t from Lemma 3.3, where fi i i i i i
,denotes the overestimator of h /j in G > D . Hence,i i i i

, , ,¯ *¯lim f (j , h ) 5 w . (4.9)i i i i
, →`

, p , , ,¯ ¯¯Since z(D ) 5 o f (j , h ), the condition (4.4) follows from (4.8) and (4.9). hi51 i i i

4.2. v-DIVISION

The bisection rule is simple but does not entirely exploit the characteristics of
, ,¯problem P(D ). As stated in Lemma 3.1, the overestimator f composing thei

,objective function agrees with h /j on two sides of trapezoid G > D . The nexti i i i
, ,selection rule of (i , w ) uses this property of f to fulfill the condition (4.4)., i i,

For each , [ +, let us select

, , , , ,¯ ¯¯ ¯i [ arg maxhf (j , h ) 2 h /j u i 5 1, . . . , pj ; (4.10), i i i i i

and let

, , ,¯¯w 5 h /j . (4.11)i i i, , ,

This kind of selection rules is often called v-division in global optimization
branch-and-bound methods (see [10]); and we follow the custom.

LEMMA 4.3. If + is generated according to the v-division rule, then (4.4) holds.
, * *Proof. Suppose that w → w 5 s as k → ` in + , +, where + is an infiniteq q q q q

9sequence with i 5 q for all l [ + . Let + be a subsequence of + such that, q q q
, , 11 , , , 11¯9 ¯w 5 s for all , [ + . Then we have h /j 5 s from (4.11), andq q q q q q
, 11 , , , 11 , ,¯ ¯9 *¯ ¯f (j , h ) 5 s from Lemma 3.1. If , → ` in + , then h /j → s andq q q q q q q q
, 11 , ,¯ *¯f (j , h ) → s . Hence, we haveq q q q

, , , , ,¯ ¯¯ ¯lim [f (j , h ) 2 h /j ] 5 0 . (4.12)q q q q q
, →`

* *Even when w 5 t , we have the same result. The condition (4.4) follows fromq q

(4.12). h

5. Description of the algorithm
jThe last thing to be discussed is how to select a cone D from the set ) in Step 1. In

the usual branch-and-bound methods, either of the following rules is adopted:
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jDepth first. The set ) is maintained as a list of stack. A cone D is taken from
2k11 2kthe top of ) ; and cones D and D are added in this order to the top.

jBest bound. The set ) is maintained as a list of priority queue. A cone D of
j¯largest z(D ) is taken out of ).

We can naturally use either in our algorithm. In addition to this, if we incorporate
the bisection or v-division rule into Step 2, our algorithm is completed.

Let e $ 0 be a given tolerance for the optimal value of problem (2.1). Then the
algorithm is summarized as follows:

algorithm SUMRATIO.
begin

for i 5 1, . . . , p do begin
1 1compute s , t , u and v ;i i i i

2 2 1 1: :G 5 h(j , h ) [ R u u # j 1h # v j; D 5 h(j , h ) [ R u s j #h # t j ji i i 1 i i i i i i i 1 i i i i i

end;
1 1 1 e: : : : :G 5 G 3 ? ? ? 3 G ; D 5 D 3 ? ? ? 3 D ; ) 5 h1j; z 5 0; k 5 1;1 p 1 p

while ) ± 5 do begin
select j [ 7 by a fixed rule (depth first or best bound); /p Step 1 p /

j: :) 5 ) \h jj; set D 5 D and define a subproblem P(D);
for i 5 1, . . . , p do /p Step 2 p /

determine the overestimator f of h /j on G > D ;i i i i i
¯construct the concave maximization problem P(D) using f ’s;i

¯ ¯solve P(D) to obtain an uper bound z(D) on the value of P(D);
e¯if z(D) 2 z . e then begin /p Step 3 p /

¯ ¯¯ ¯let (j, h ) be a solution of value z(D) to P(D);
p e¯¯if o h /j . z theni51 i i

e p e e ¯¯: : ¯¯update z 5 o h /j and (j , h ) 5 (j, h );i51 i i

select i [ h1, . . . , pj and w [ [s , t ] by a fixed rule (bisection or v-division);i i i
2k 2:D 5 h(j , h ) [ R u s j #h # w j j;i i i 1 i i i i i
2k11 2:D 5 h(j , h ) [ R u w j #h # t j j;i i i 1 i i i i i
j j:D 5 D 3 ? ? ? D 3 D 3 D 3 ? ? ? 3 D for j 5 2k, 2k 1 1;1 i21 i i11 p

: :) 5 ) < h2k, 2k 1 1j; k 5 k 1 1
end

end;
e e e e elet x be a feasible solution to (2.1) such that j 5 Cx 1 g and h 5 Dx 1 d

end;

THEOREM 5.1. When e . 0, the algorithm SUMRATIO terminates in a finite
enumber of iterations and yields a globally e-optimal solution x to problem (2.1).

Proof. Let us assume the contrary: the algorithm SUMRATIO is infinite. Then it
j,generates an infinite sequence + of D ’s satisfying (4.3). The backtracking criterion
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ez̄(D) 2 z . e implies that the following inequalities hold at the end of each iteration
,in which j for , [ + is taken out of 7 :

p

, , e ,¯¯ ¯O h /j # z , z(D ) 2 e ,i i
i51

, j , p ,, ¯ ¯where D 5 D . From Lemmas 4.2 and 4.3, however, lim z(D ) 2 o h /, →` i51 i
,

j̄ 5 0 whichever rule we adopt for selecting (i, w ) in Step 3. Therefore, e # 0,i i
ewhich is a contradiction. The e-optimality of x follows from the backtracking

criterion. h

COROLLARY 5.2. Suppose e 5 0. If the best bound rule is adopted in Step 1, the
¯ ¯sequence of (j, h )’s generated by the algorithm SUMRATIO has limit points, each

of which is a globally optimal solution to problem MP.
Proof. If the algorithm happens to be finite, the assertion is obvious from the

backtracking criterion. Assume that it is infinite and generates an infinite sequence
+ just stated in the proof of the previous theorem. The best bound rule then implies
the following at the beginning of each iteration in which j for , [ + is taken out of,

7 :

, j j¯ ¯z(D ) $ z(D ) $ z(D ) , ; j [ ) ,

, j , p , ,, ¯¯ ¯where D 5 D . However, lim z(D ) 2 o h /j 5 0; and besides,→` i51 i i
jmaxhz(D ) u j [ ) j is nothing but the optimal value of MP. Hence, every limit point

, ,¯ ¯h(j , h ) , [ + j is a globally optimal solution to MP. h

5.1. NUMERICAL EXAMPLES

23To illustrate the algorithm SUMRATIO, let us compute a globally 10 -optimal
solution to the following small instance according to the depth-first and v-division
rules:

3x 1 5x 1 3x 1 50 3x 1 4x 1 501 2 3 1 2
]]]]]]] ]]]]]]]maximize z 5 1 1u 3x 1 4x 1 5x 1 50 4x 1 3x 1 2x 1 501 2 3 1 2 3

4x 1 2x 1 4x 1 501 2 3
]]]]]]] (5.1)u 5x 1 4x 1 3x 1 501 2 3

subject to 6x 1 3x 1 3x # 10, 10x 1 3x 1 8x # 101 2 3 1 2 3u x , x , x $ 0 .1 2 3

1 1Before starting iteration, we have to determine the numbers s , t , u and v fori i i i

i 5 1, 2, 3. Although these numbers are not specified in the description of the
algorithm, only one linear program yields them for each i in this particular case.

3namely, v is determined as the maximum value of o (c 1 d )x 1 100 byi j51 ij ij j

solving a linear programming problem with the same constraints as (5.1). As for u ,i
3 3it can be set to 100 because both o c x 1 50 and o d x 1 50 have thej51 ij j j51 ij j
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1 1minimum value 50. Then, s and t are given by 50/(v 2 50) and (v 2 50) /50,i i i i
1 1respectively. It is easily seen that these s , t , u and v satisfy (2.3), though thei i i i

1resulting G > D is somewhat baggy to wrap up V:
2

G 5 h(j , h ) [ R u 100.000 # j 1h # 130.000j1 1 1 1 1 1

2
G 5 h(j , h ) [ R u 100.000 # j 1h # 123.333j2 2 2 1 2 2

2
G 5 h(j , h ) [ R u 100.000 # j 1h # 120.000j3 3 3 1 3 3

1 2
D 5 h(j , h ) [ R u 0.625j #h # 1.600j j1 1 1 1 1 1 1

1 2
D 5 h(j , h ) [ R u 0.682j #h # 1.467j j2 2 2 1 2 2 2

1 2
D 5 h(j , h ) [ R u 0.714j #h # 1.400j j .3 3 3 1 1 3 3

As a by-product of this preprocess, we have at least one feasible solution to (5.1),
which can be used as the initial incumbent:

e ex 5 (0.000, 3.333, 0.000) , z 5 3.015
e e(j ; h ) 5 (66.667, 63.333, 56.667; 63.333, 60.000, 63.333) .

1 1 1 1After storing D 5 D 3 D 3 D in ), we proceed to the iterative process.1 2 3

1Iteration 1. We select D as D from ) and let ) 5 ) \h1j. According to (3.1) and
(3.2), we determine the overestimator of j /h on G > D for i 5 1, 2, 3:i i i i

20.016j 1 0.026h 1 0.6251 1
f (j , h ) 5 minH J1 1 1 20.020j 1 0.013h 1 1.6001 1

20.017j 1 0.025h 1 0.6822 2
f (j , h ) 5 minH J2 2 2 20.020j 1 0.014h 1 1.4672 2

20.017j 1 0.024h 1 0.7143 3
f (j , h ) 5 min .H J3 3 3 20.020j 1 0.014h 1 1.4003 3

¯The problem P(D) of maximizing the sum of these three concave functions is
equivalent to a linear programming problem:

maximize z 5 z 1 z 1 z1 2 3

subject to 6x 1 3x 1 3x # 10, 10x 1 3x 1 8x # 101 2 3 1 2 3

x , x , x $ 01 2 3u
2.925x 1 2.275x 1 8.125x 2 100.000z $ 2111.2501 2 3 1

22.925x 2 6.500x 1 0.325x 2 130.000z $ 2159.2501 2 3 1

0.625 # z # 1.6001

4.821x 1 0.673x 1 4.933x 2 100.000z $ 2107.4241 2 3 2u
20.673x 2 4.821x 1 3.364x 2 123.333z $ 2141.6461 2 3 2

0.682 # z # 1.4672

5.143x 1 6.171x 1 0.343x 2 100.000z $ 2105.7141 2 3 3

21.029x 1 2.057x 2 4.457x 2 120.000z $ 2133.7141 2 3 3u
0.714 # z # 1.400 .3
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We solve this and obtain and upper bound on the value of the subproblem P(D):
3 ¯¯ ¯ ¯x 5 (0.000, 0.325, 1.128) , z(D) 5 3.422 , o h /j 5 3.064i51 i i

¯ ¯(j; h ) 5 (55.011, 51.302, 55.163; 56.941, 53.232, 54.685) .

e 23 2 3¯Since z(D) 2 z 5 0.407 . 10 , we see that D needs dividing into D and D . In
p e¯¯addition, since o h /j 5 3.064 . z , we update the incumbent:i51 i i

e ex 5 (0.000, 0.325, 1.128) , z 5 3.064
e e(j ; h ) 5 (55.011, 51.302, 55.163; 56.941, 53.232, 54.685) .

To apply the v-division rule, we choose an index:

¯ ¯¯ ¯1 [ arg maxhf (j , h ) 2 h /j u i 5 1, 2, 3ji i i i i

5 arg maxh1.212 2 1.035, 1.132 2 1.038, 1.078 2 0.991j
5 arg maxh0.176, 0.094, 0.087j ,

¯¯and let w 5 h /j 5 1.035. Then we divide D into1 1 1 1

2 2
D 5 h(j , h ) [ R u 0.625j #h # 1.035j j1 1 1 1 1 1 1

3 2
D 5 h(j , h ) [ R u 1.035j #h # 1.600j j ,1 1 1 1 1 1 1

3 3 2 2and add D 5 D 3 D 3 D and D 5 D 3 D 3 D to the top of the stack ) in this1 2 3 1 2 3

order.

2Iteration 2. We take D 5 D out of ) 5 h2, 3j. Since D and D remain the same as2 3

before, only the overestimator of j /h needs changing:1 1

20.013j 1 0.020h 1 0.6251 1
f (j , h ) 5 min .H J1 1 1 20.013j 1 0.013h 1 1.0351 1

¯As a result, the linear program equivalent to P(D) is different in only three
¯ ¯¯constraints from the previous one. By solving it, we see that x and (j, h ) remains

¯optimal but z(D) changes:
3

¯¯ ¯z(D) 5 3.245 , O h /j 5 3.064 .i i
i51

e 23¯Since z(D) 2 z 5 0.181 . 10 , we divide D further. Choosing

¯¯ ¯2 [ arg maxhf , h ) 2 h /j u i 5 1, 2, 3ji i i i

5 arg maxh0.000, 0.094, 0.087j

¯¯and letting w 5 h /j 5 1.038, we have2 2 2

4 2
D 5 h(j , h ) [ R u 0.682j #h # 1.038j j2 2 2 1 2 2 2

5 2
D 5 h(j , h ) [ R u 1.038j #h # 1.467j j ,2 2 2 1 2 2 2
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5 5 4 4and add D 5 D 3 D 3 D and D 5 D 3 D 3 D to ).1 2 3 1 2 3

4Iterations 3, 4. As in the previous iterations, we take D 5 D out of ) 5 h4, 5, 3j and
obtain

3

¯¯ ¯z(D) 5 3.151 , O h /j 5 3.063 .i i
i51

e 23¯Since z(D) 2 z 5 0.087 . 10 , we choose D and divide it into3

6 2
D 5 h(j , h ) [ R u 0.714j #h # 0.990j j3 3 3 1 3 3 3

7 2
D 5 h(j , h ) [ R u 0.990j #h # 1.400j j .3 3 3 1 3 3 3

6We next take D 5 D out of ) 5 h6, 7, 5, 3j and obtain

3

¯¯ ¯z(D) 5 3.063 , O h /j 5 3.063 .i i
i51

e 23¯Since z(D) 2 z 5 20.001 , 10 , we see that D contains no optimal solutions to
(5.1); and we backtrack to the top of 7 5 h7, 5, 3j.

23After 21 iterations, we have ) 5 5 and a 10 -optimal solution to (5.1):

e ex 5 (0.000, 0.000, 1.250) , z 5 3.074
e e(j ; h ) 5 (53.750, 50.000, 55.000; 56.250, 52.500, 53.750) .

The total numbers of iterations and branching operations are 25 and 13, respectively;
and the incumbent is updated six times. If we employ the bisection rule instead of
v-division, the incumbent is updated five times while the total numbers of iterations
and branching operations are 103 and 52, respectively.

For the readers’ information, we give the result on another instance slightly larger
than (5.1):

4x 1 3x 1 3x 1 50 3x 1 4x 1 501 2 3 1 3
]]]]]]] ]]]]]]]maximize z 5 1 13x 1 3x 1 50 4x 1 4x 1 5x 1 502 3 1 2 3u
x 1 2x 1 5x 1 50 x 1 2x 1 4x 1 501 2 3 1 2 3
]]]]]] ]]]]]]1x 1 5x 1 5x 1 50 5x 1 4x 1 50 (5.2)1 2 3 2 3u

subject to 2x 1 x 1 5x # 10, x 1 6x 1 3x # 101 2 3 1 2 3

5x 1 9x 1 2x # 10, 9x 1 7x 1 3x # 101 2 3 1 2 2u x , x , x $ 0 .1 2 3

23If we employ the depth-first and v-division rule, we have a 10 -optimal solution to
(5.2) in 31 iterations and 15 branching operations:

e ex 5 (0.000, 1.111, 0.000) , z 5 4.217
e e(j ; h ) 5 (53.333, 50.000, 52.222, 52.222; 53.333, 54.444, 55,556, 55.556) .
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The incumbent is updated three times. When we employ the bisection rule, it is
updated five times while the total numbers of iterations and branching operations are
117 and 59, respectively.

6. Experiment with the algorithm

In this section, we will report computational results of testing the algorithm
SUMRATIO on randomly generated problems, which were of the form:

n9O d x 1 cp ij ij
j51u
]]]]maximize z 5 O n9

i51 O c x 1 cij ij (6.1)j51u
n9

subject to O a x # 1.0, k 5 1, . . . , mkj j
j51u x $ 0.0, j 5 1, . . . , n9 .j

Data c , d [ [0.0, 0.5] and a [ [0.0, 1.0] were uniformly random numbers. Allij ij kj

constant terms of denominators and numerators were the same number c, which
ranged between 2.0 and 100.0.

The algorithm was coded in double precision C language according to the
25 1 1description in Section 5. The tolerance e was fixed at 10 . The numbers s , t , ui i i

and v were determined in the same way as in the case of example (5.1). In Step 1,i

depth first was adopted as the rule for selecting j from ) in order to save on
memory. In Step 2, the linear programming problem (3.5) was solved to compute

¯ ¯ ¯(j, h ) and z(D). Starting from the preceding solution, we restored the primal
feasibility of (3.5) by applying some dual simplex pivoting operations. As the rule
for dividing D in Step 3, we tried both bisection and v-division. The code adopting
the former was named SR 2 and the latter SR O. Both were tested on a Unix- -
workstation (UltraSPARC-IIi, 440 MHz).

6.1. COMPUTATIONAL RESULTS

Figure 3 depicts the average performance of the algorithm SUMRATIO on ten
instances of size (m, n9) 5 (60, 40) for each p when the value of c was fixed at 10.0.
The size of p was made to change by 2 each from 2 to 12. We see from the line
graph at the top that SR O requires more branching operations that SR 2 for p- -
greater than 7. This is an unexpected result in comparison with the usual rectangular
branch-and-bound method for separable concave minimization problems (see e.g.,
Remark 5.6 in [21]). As is shown by the graph at the bottom, however, SR O-

¯ ¯requires less CPU time than SR 2 for all p up to 10. In the v-division rule, (j, h )-
2k 2k11always belongs to both D and D . Therefore, the feasibility of (3.5) can recover
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Figure 3. Behavior of SUMRATIO when (m, n9) 5 (60, 40) and c 5 10.0.
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Figure 4. Behavior of SUMRATIO when (m, n9, p) 5 (60, 40, 5).
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Table 1. Computational results of SR O when c 5 10.0–

m 3 n9 p 5 3 p 5 4 p 5 5 p 5 6

Branch Time Branch Time Branch Time Branch Time

40 3 60 24.2 0.605 43.5 0.568 114 1.35 390 4.10
(12.9) (0.308) (12.64) (0.125) (64.73) (0.797) (335) (3.98)

80 3 60 22.5 1.03 108 3.22 237 6.85 647 18.3
(7.15) (0.231) (94.5) (3.24) (182) (6.10) (417) (15.3)

60 3 80 34.5 1.62 117 4.85 304 11.0 613 20.9
(11.6) (0.460) (107) (4.04) (200) (6.47) (459) (17.2)

100 3 80 27.7 2.35 107 5.51 412 17.9 521 22.3
(14.1) (0.627) (75.5) (3.14) (480) (21.4) (545) (23.4)

80 3 100 57.1 4.59 138 9.35 365 22.8 989 66.7
(31.6) (2.15) (114) (6.15) (299) (18.5) (1,385) (99.3)

120 3 100 51.2 6.70 83.9 8.86 500 40.7 1,045 114
(28.7) (2.93) (55.2) (3.45) (537) (41.2) (1,045) (169)

quickly whichever cone is chosen from ) in the next iteration. In other words, the
less CPU time of SR O is due to its fewer simplex pivoting operations.-

Figure 4 gives the results on instances of size (m, n9, p) 5 (60, 40, 5) for 11
different values of c from 2.0 to 100.0 These two line graphs show that the
algorithm SUMRATIO is very sensitive to the magnitude of c, whether it uses
bisection or v-division. For a small c, each trapezoid G > D is defined near thei i

origin in the j -h plane. In that case, h /j is quite different from linear in shape;i i i i

and hence f defined only by two affine functions is too simple to estimate h /ji i i

precisely. In contrast to this, f can make a fine estimate of h /j if G > D is fari i i i i

away from the origin, i.e., c is a large number. We can recognize from the figure that
such a fine estimate is given when c is greater than 20.0.

Based upon the above observations, we tried to solve larger-size problems with c
fixed at 10.0 using the v-division code SR O. The results are listed in Table 1. The-
columns labeled ‘Branch’ and ‘Time’ contain the average number of branching
operations and the average CPU time in seconds, respectively, required to solve ten
instances of size up to (m, n9, p) 5 (120, 100, 6). The figures in parentheses are their
standard deviations. We see from this table that SR O is rather insensitive to the size-
(m, n9) and can solve fairly large-size problems as long as p is less than 7. Since we
have not yet compared our algorithm with other existing ones, we cannot make a
final conclusion. At least for the randomly generated class (6.1), however, these
computational results will support our claim that SUMRATIO can serve as a
practical deterministic algorithm.
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